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Abstract
The Podolsky generalized electrodynamics with higher derivatives is
formulated in the first-order formalism. The first-order relativistic wave
equation in the 20-dimensional matrix form is derived. We prove that the
matrices of the equation obey the Petiau–Duffin–Kemmer algebra. The
Hermitianizing matrix and Lagrangian in the first-order formalism are given.
The projection operators extracting solutions of field equations for states with
definite energy–momentum and spin projections are obtained, and we find the
density matrix for the massive state. The 13 × 13-matrix Schrödinger form of
the equation is derived, and the Hamiltonian is obtained. Projection operators
extracting the physical eigenvalues of the Hamiltonian are found.

PACS numbers: 03.65, Pm, 11.30, Cp, 12.90.+b

1. Introduction

There is currently a renewal of interest in higher derivative (HD) field theories. HD field
equations appear in many models such as renormalizable quantum gravity [1], Podolsky’s
generalized electrodynamics [2], the Lee–Wick model [3] and others. One of the reasons
to consider HD theories is to improve renormalization properties of theories and to remove
ultraviolet divergences [4]. However, HD models suffer some difficulties connected with the
presence of ghosts. These can lead to the violation of unitarity [5, 6]. Nevertheless, in some
HD models these problems with negative probabilities and S-matrix unitarity can be avoided
[7]. Also, the quadratic divergence associated with the Higgs mass was removed in the HD
Lee–Wick standard model [8], that solves the hierarchy problem. Extensions of the minimal
standard model to new physics are justified until observations at the large hadron collider
(LHC) are analyzed.

It is well known that in classical electrodynamics the electromagnetic mass is infinite
and, therefore, there are infinities associated with a point particle. One of the ways to solve
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this problem in classical theory is to use the Lorentz invariant regularization of the Maxwell
equations at short distances. With the help of an appropriate cutoff the point particle limit can
be achieved. This programme was realized in Podolsky’s electrodynamics. Firstly the interest
to Podolsky’s electrodynamics was due to the finiteness of the theory: the electromagnetic
energy of a point charge is finite contrarily to ordinary electrodynamics. If distances are much
greater than a cutoff, Podolsky’s electrodynamics converts into Maxwell’s electrodynamics.
The solution to Poisson equation for the potential corresponding to a point charge e, located
at the origin, in Podolsky’s electrostatics is given by [2]

ϕ = e

4πr
(1 − e−r/a),

where a is a new parameter of the theory with the dimension of the length playing the role of
the cutoff. This potential becomes the Coulomb potential at distances much bigger than a. At
r → 0, the potential ϕ approaches the finite value e/4πa. The energy of the field for a point
charge is also finite in the hole space. Thus, the electrostatic energy can be considered as the
regularized electromagnetic mass of a point charge. It was shown [9] that higher derivative
terms in Podolsky’s equations suppress unphysical runaway solutions with exponentially
growing acceleration of the Abraham–Lorentz equation. There are no unwanted solutions if
the cutoff is greater than half of the electron classical radius. The upper bound on the parameter
is of the order a ∼ 10−16 cm [9], i.e. the same as the Compton wavelength of the neutral Z-
boson. Classical Maxwell’s electrodynamics is not valid at small distances and time intervals
due to quantum effects. It was also mentioned in [10] that in the framework of non-relativistic
quantum theory, a natural cutoff of order of the electron Compton wavelength is effectively
appeared by QED processes in close analogy with the classical theory of extended charges.
Thus, one may treat the classical Podolsky’s electrodynamics as an effective theory where a
cutoff introduced, a, is due to the quantum processes at small distances (large momentum). If
distances are larger than a, the classical regime begins.

At the same time although QED describes all experimental data well, there are some
internal difficulties with the regularization [11]. We mention infrared catastrophe: when the
average number of photons n → ∞, then the matrix element |〈0 out|0 in〉| → 0, and it is
impossible to construct the ‘out’ Fock space from the ‘in’ space, and impossible to find the
unitary operator S [11]. The authors [12] wrote: ‘There is an alternative possibility to avoid
infrared divergences. We give the photon a small mass μ. This will cut off the low-energy
region since now k0 > μ and therefore remove the infrared divergence . . . . The infrared
divergences of quantum electrodynamics are essentially classical’. We continue with the
citation [13]: ‘Another aspect of infrared singularities is related to the long-range character of
the Coulomb forces. The latter induces an infinite phase shift on the scattered plane waves.
To prevent it, we may introduce a screening factor which in a consistent theory would be
related to the fictitious photon mass μ’. Thus, in QED the cutoff is introduced ‘by hands’ as
for small distances (to remove ultraviolet divergences) as well as for large distances (to avoid
infrared catastrophe). Therefore, one may consider naturally to extend classical Podolsky’s
electrodynamics on the quantum level where the cutoff is appeared due to the presence of
higher derivatives. Anyway, different aspects of Podolsky’s electrodynamics, in our opinion,
have a definite theoretical interest.

Some features of Podolsky’s electrodynamics were investigated in [14–17]. The goal of
this paper is to formulate Podolsky’s electrodynamics equation in the form of the first-order
relativistic wave equation and to obtain solutions in the form of projection matrices.

The paper is organized as follows. In section 2, the third-order field equation is discussed.
We derive the first-order relativistic wave equation for Podolsky’s electrodynamics in the 20-
dimensional matrix form. The Hermitianizing matrix and the Lagrangian in the matrix form
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are found in section 3. The projection operators extracting solutions of field equations for
definite energy and spin states of particles are obtained in section 4. We find the density matrix
for the massive state. In section 5, the 13 × 13-matrix Schrödinger form of the equation is
derived, and the Hamiltonian is obtained. Solutions of this equation are found in the form of
projection operators. The results are discussed in section 6. In appendix A, we consider the
first-order wave equation in the presence of the charge current density. The Lorentz covariance
of the equation is proven. Some useful products of matrices are derived in appendix B. We
obtain ‘minimal’ polynomials of the matrix of the equation for massless and massive states.
In appendix C, the ‘minimal’ polynomial of the Hamiltonian matrix is derived.

The Heaviside units are chosen, h̄ = c = 1, and Euclidian metric is used, xμ = (xm, ix0).
Greek letters range from 1 to 4 and Latin letters range from 1 to 3, and there is a summation
on repeated indices.

2. Field equations

2.1. Third-order field equations

The Lagrangian of Podolsky’s electrodynamics is given by [2]

LP = − 1
2

[
1
2F 2

μν + a2(∂μFνμ)2
]
, (1)

where Fμν = ∂μAν − ∂νAμ is the field strength and ∂ν = ∂/∂xν = (∂/∂xm, ∂/∂(it)). The
dimensional parameter a can be written as a = 1/m, where m is the mass parameter. The
Euler–Lagrange equations follow from equation (1):(

∂2
α − m2

)
∂μFνμ = 0. (2)

The Lagrangian (1) and the equation of motion (1) are gauge invariant under the U(1)-group.
We can represent equation (2), in the momentum space, as the matrix equation

(p2 + m2)(p2 − p · p)A = 0, (3)

where A = {Aμ}, the matrix-dyad p ·p, with matrix elements (p ·p)μν = pμpν , is introduced
and the four-momentum is pμ = (p, ip0). The matrix M = p2 − p · p obeys the minimal
polynomial M(M − p2) = 0, so that the eigenvalues of the matrix M are zero and p2. Thus,
equation (3) leads to the dispersion equation

p2(p2 + m2) = 0. (4)

Equation (4) shows that there are massless and massive states in the spectrum. The propagator
of fields is given by

m2

p2(p2 + m2)
= 1

p2
− 1

p2 + m2
. (5)

The first term in equation (5) is the propagator of the photon massless field, and the second
term corresponds to the propagator of the massive state of the field. A ‘wrong’ sign (−) in
equation (5) indicates that the massive field state is a ghost. As a result, the massive field state
gives the negative contribution to the energy [2], and the classical Hamiltonian is unbounded.
To have the positive eigenvalues of the Hamiltonian in the second quantized theory, one has to
introduce the indefinite metric. The commutation relations for creation, annihilation operators
of the massive state have the wrong sign (−) [2]. The Hilbert space of states is the direct
sum of the two subspaces Hp and Hn with positive (Hp) and negative (Hn) square norms. The
massless states correspond to a positive square norm, and the massive state to a negative square
norm. The transitions between the two subspaces Hp and Hn break the unitarity of the theory.
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But if the mass m → ∞ such transitions are forbidden and the unitarity is recovered. Thus, a
ghost can be removed in the theory at large m. This procedure is similar to the Pauli–Villars
regularization of Feynman diagrams. Therefore, there is a physical sense of the Podolsky
theory. We can also argue (similar to Lee–Wick model [8]) that there is no problem with
unitarity if the massive photon decays to ordinary fermions through its couplings and is not in
the spectrum.

2.2. First-order field equations

Now we reformulate the third-order field equation (2) in the form of first-order relativistic
wave equation. Let us consider the system of first-order equations

∂μψνμ + mψ̃ν = 0, (6)

∂νψμ − ∂μψν + mψμν = 0, (7)

∂μψ̃νμ + mψ̃ν = 0, (8)

∂νψ̃μ − ∂μψ̃ν + mψ̃μν = 0, (9)

where

ψμ = mAμ, ψμν = Fμν, ψ̃μ = 1

m
∂νFνμ, ψ̃μν = 1

m2
∂2
αFμν. (10)

After replacing ψ̃ν from equation (6) and ψ̃μν from equation (9) into equation (8), one obtains
equation (2). Equation (7) is the usual equation for the potentials. Thus, we claim that the
system of first-order equations (6)–(9) is equivalent to the third-order equation (2). Let us
introduce the 20-dimensional wavefunction

�(x) = {ψA(x)} =

⎛
⎜⎜⎜⎜⎝

ψμ(x)

ψμν(x)

ψ̃μ(x)

ψ̃μν(x)

⎞
⎟⎟⎟⎟⎠ (A = μ, [μν], μ̃, [̃μν]), (11)

where ψ[μν](x) = ψμν(x), ψμ̃(x) = ψ̃μ(x) and ψ[̃μν](x) = ψ̃μν(x). The function �(x)

represents the direct sum of two four-vectors ψμ(x), ψ̃μ(x), and two antisymmetric tensors of
the second rank ψμν(x), ψ̃μν(x).

We explore the elements of the entire matrix algebra εA,B [18, 19] with matrix elements
and products:

(εM,N)AB = δMAδNB, εM,AεB,N = δABεM,N , (12)

where A,B,M,N = μ, [μν], μ̃, [̃μν], and generalized Kronecker symbols

δ[μν][αβ] = δμαδνβ − δμβδνα.

The εM,N are 20 × 20-matrices that consist of zeros and only one element is unity where the
row M and the column N cross.

With the help of equations (11) and (12), the system of equations (6)–(9) can be represented
in the form of the first-order equation

∂μ(εν,[νμ] + ε[νμ],ν + εν̃,[̃νμ] + ε[̃νμ],̃ν )AB�B(x)

+ m
(

1
2ε[νμ],[νμ] + εν,̃ν + εν̃,̃ν + 1

2ε[̃νμ],[̃νμ]
)

AB
�B(x) = 0. (13)

There is a summation over all repeated indices. We define 20-dimensional matrices as follows:
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βμ = β(1)
μ + β̃(1)

μ , β(1)
μ = εν,[νμ] + ε[νμ],ν , β̃(1)

μ = εν̃,[̃νμ] + ε[̃νμ],̃ν , (14)

P = 1
2ε[νμ],[νμ] + εν,̃ν + εν̃,̃ν + 1

2ε[̃νμ],[̃νμ]. (15)

Taking into account equations (14) and (15), equation (13) takes the form of the first-order
relativistic wave equation:

(βμ∂μ + mP)�(x) = 0. (16)

The presence of the projection operator P in equation (16) is connected with the fact that
there is a massless state in the spectrum [19, 20]. Thus, we reformulated the higher derivative
equation (2) in the form of the first-order equation (16). The P is the projection operator,
P 2 = P [21] and it is not the Hermitian matrix P + �= P . The matrices β(1)

μ and β̃(1)
μ are

Hermitian matrices and have non-zero components in ten-dimensional subspaces (μ, [μν]),
(μ̃, [̃μν]), respectively, and obey the Petiau–Duffin–Kemmer algebra [22, 23] (see also
[18, 19]):

βμβνβα + βαβνβμ = δμνβα + δανβμ. (17)

Therefore, the matrix βμ is the direct sum of two ten-dimensional Petiau–Duffin–Kemmer
matrices. The projection operator P ‘connects’ two ten-dimensional subspaces (μ, [μν]) and
(μ̃, [̃μν]). Thus, HD Podolsky’s electrodynamics equations lead to ‘doubling’ the dimension
of the Petiau–Duffin–Kemmer algebra representation.

3. The Lorentz covariance and Hermitianizing matrix

Let us prove the Lorentz covariance of equation (16). The Lorentz group transformations
of coordinates are given by x ′

μ = Lμνx
′
ν , where the Lorentz matrix L = {Lμν} satisfies the

equation LμαLνα = δμν . Wavefunction (11), under the Lorentz coordinates transformations,
becomes

� ′(x ′) = T �(x), (18)

where the 20 × 20-matrix T realizes the reducible tensor representation of the Lorentz group.
The first-order wave equation (16) is transformed into

(βμ∂ ′
μ + mP)� ′(x ′) = (βμLμν∂ν + mP)T �(x) = 0, (19)

where ∂ ′
μ = Lμν∂ν . We have the Lorentz covariance of equation (16) if equations

βμT Lμν = Tβν, PT = T P (20)

hold. The infinitesimal Lorentz matrix is given by

Lμν = δμν + εμν, εμν = −ενμ, (21)

where εμν are six parameters defining rotations and boosts. The matrix T at the infinitesimal
Lorentz transformations reads

T = 1 + 1
2εμνJμν, (22)

where Jμν are the generators of the Lorentz group in the 20-dimensional space. With the
aid of equations (21) and (22) (using the smallness of parameters εμν), we obtain from
equation (20)

βμJαν − Jανβμ = δαμβν − δνμβα, PJαν = JανP . (23)

5
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The Lorentz group generators in the 20-dimensional representation space are given by

Jμν = βμβν − βνβμ

= εμ,ν − εν,μ + ε[λμ],[λν] − ε[λν],[λμ] + εμ̃,̃ν − εν̃,μ̃ + ε[̃λμ],[̃λν] − ε[̃λν],[̃λμ], (24)

and obeys equation (23). Thus, we have proved the Lorentz covariance of first-order wave
equation (16). In appendix A, we generalize equations considered in the case of field equations
with the source. It is easy to verify with the help of equation (12) that the generators (24) obey
the usual commutation relations

[Jμν, Jαβ ] = δναJμβ + δμβJνα − δνβJμα − δμαJνβ. (25)

The Hermitianizing matrix η should satisfy the relations [24]

ηβm = −β+
mη+, ηβ4 = β+

4 η+ (m = 1, 2, 3). (26)

We find

η = εm,m − ε4,4 + ε[m4],[m4] − 1
2ε[mn],[mn] + εm̃,m̃ − ε4̃,̃4 + ε[̃m4],[̃m4] − 1

2ε
˜[mn], ˜[mn]. (27)

The matrix η is the Hermitian matrix, η+ = η and commutes with the projection operator P:

ηP = Pη. (28)

Consider the ‘conjugated’ wavefunction

�(x) = �+(x)η = (ψμ,−ψμν, ψ̃μ,−ψ̃μν), (29)

and �+(x) is the Hermitian conjugated wavefunction. We took into account that for neutral
fields, (ψm,ψ0) are real variables. Thus, the relativistically invariant bilinear form is
�(x)�(x) = �+(x)η�(x). Then, we obtain from equation (16) the ‘conjugated’ equation

�(x)(βμ
←−
∂ μ − mP +) = 0. (30)

Formally, one can construct the Lagrangian

L = − 1
2 [�(x)(βμ∂μ + mP)�(x) − �(x)(βμ

←−
∂ μ − mP +)�(x)]. (31)

By varying the action S = ∫
d4x L, corresponding to the Lagrangian (31), we obtain equations

of motion (16) and (30). One can check using equations (26) and (29) that the Lagrangian L
is the real function, L∗ = L. In addition, for neutral fields the equality

�(x)P +�(x) = �(x)P�(x) (32)

is valid although P + �= P . If one wants to consider charged fields (not photon fields), then the
electric current density is given by

Jμ(x) = i

m3

[
(∂ρF

∗
ρν)∂

2
αFνμ − (

∂2
αF ∗

νμ

)
(∂ρFρν)

]
, (33)

where the complex conjugation ∗ does not act on the metric imaginary unit. Using equations
of motion (2), one can verify that electric current is conserved, ∂μJμ(x) = 0. The electric
current density (33) can be cast into the matrix form

Jμ(x) = i�(x)β̃(1)
μ �(x). (34)

It follows from equation (33) that for the neutral (photon) fields, the electric current density
vanishes, Jμ(x) = 0, as it should be.

6
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4. The mass and spin projection operators

Let us consider solutions to equation (16) with definite energy and momentum. In the
momentum space, equation (16) becomes

��(p) = 0, � = ip̂ + mP, p̂ = βμpμ, (35)

where pμ is a four-momentum pμ = (p, ip0). Let us consider the massive state, p2 = −m2.
For this case, the 20-dimensional matrix � obeys the equation (see (B.5) in appendix B)

�(� − m)(� − 2m)(�2 − m� − m2) = 0. (36)

From equation (36), we find the solution to equation (35) in the form of the matrix

� = N(� − m)(� − 2m)(�2 − m� − m2), (37)

where N is a normalization constant, so that �� = 0. This means that every column of the
matrix � is the solution to equation (35). The requirement that � is the projection operator,
�2 = �, leads to the normalization constant N = −1/(2m4) [21]. The projection operator
(37) extracts solutions to equation (35) for definite energy and momentum corresponding to
the massive state.

With the help of the Lorentz group generators (24), we obtain the spin operator (see [21])

σp = − i

2|p|εabcpaJbc = − i

|p|εabcpaβbβc. (38)

The operator (38) obeys the ‘minimal’ matrix equation

σp(σp − 1)(σp + 1) = 0. (39)

In accordance with the general method [21], we obtain the projection operators extracting spin
projections ±1 and 0,

S(±1) = 1
2σp(σp ± 1), S(0) = 1 − σ 2

p, (40)

satisfying the relations S2
(±1) = S(±1), S(±1)S(0) = 0, S2

(0) = S(0).
One may check with the help of equation (12) that the operators (40) commute with the

mass projection operator (37). As a result, from equations (37) and (40), we find the projection
operators

�±1 = �S(±1), �0 = �S(0) (41)

extracting solutions to equation (35) for definite energy–momentum, spin projections ±1, 0
for states of particles with the mass m. Equation (41) also defines the density matrix for pure
spin states. It follows from the ‘minimal’ polynomial equation (B.4) that for the massless
state, p2 = 0, zero eigenvalues of the matrix � are degenerated, and therefore it is impossible
to construct solutions to equation (35) in the form of the projection operator [21].

5. Quantum mechanical Hamiltonian

Now we obtain the quantum mechanical Hamiltonian from equations (6)–(9). The Schrödinger
form of equations has some attractive features because non-dynamical components of the
wavefunction are absent. To find the Schrödinger form of equations (6)–(9), we exclude the
non-dynamical components. Equations (6)–(9) can be cast in the form of two systems

mψ4m = ∂4ψm − ∂mψ4, mψ̃4m = ∂4ψ̃m − ∂mψ̃4,

∂4ψm4 + ∂nψmn = −mψ̃m, ∂4ψ̃m4 + ∂nψ̃mn = −mψ̃m,
(42)

mψmn = ∂mψn − ∂nψm, mψ̃mn = ∂mψ̃n − ∂nψ̃m, mψ̃4 = ∂mψ̃m4. (43)

7
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We can to exclude auxiliary (non-dynamical) components ψmn, ψ̃mn, ψ̃4 from equation (43).
However, ψ4 cannot be excluded from equation (42). To introduce the evolution of the ψ4

in time, we use the Lorentz condition ∂mψm + ∂4ψ4 = 0. After replacing the non-dynamical
components ψmn, ψ̃mn, ψ̃4 from equation (43) into equation (42), we obtain the following
equations:

i∂tψm = mψm4 − ∂mψ4,

i∂tψ4 = ∂nψn,

i∂t ψ̃m = mψ̃m4 − ∂mψ̃4, (44)

i∂tψn4 = mψ̃n +
1

m

(
∂m∂nψm − ∂2

mψn

)
,

i∂t ψ̃n4 = mψ̃n +
1

m

(
∂m∂nψ̃m − ∂2

mψ̃n

)
.

Equation (44) show that 13 components of the wavefunction �(x) possess the evolution in
time. Therefore, we introduce the 13-component wavefunction

�(x) =

⎛
⎜⎜⎜⎝

ψμ(x)

ψm4(x)

ψ̃m(x)

ψ̃m4(x)

⎞
⎟⎟⎟⎠ . (45)

With the help of the elements of the matrix algebra equation (12), we rewrite equation (44) in
the Schrödinger form

i∂t�(x) = H�(x), (46)

where the Hamiltonian is given by

H = m(εn,[n4] + εñ,[̃n4] + ε[n4],̃n + ε[̃n4],̃n) + (ε4,m − εm,4)∂m

+
1

m

[
(ε[m4],n + ε[̃m4],̃n − εñ,[̃m4])∂m∂n − (ε[m4],m + ε[̃m4],m̃)∂2

n

]
. (47)

From the minimal equation (C.6), obtained in appendix C, we find the projection operators
extracting states with positive and negative energies for the massless states (p2 = 0)

�0
± = ± (H ± |p|)H2(H2 − p2 − m2)(H2 − 2p2 − m2)

2|p|3m2(p2 + m2)
, (48)

and the massive states (p2 = −m2)

�± = ∓ (H ± p0)H2(H2 − p2)
(
H2 − p2 − p2

0

)
2p3

0m
2p2

. (49)

Projection operators (48) and (49) obey the following equations:

(
�0

±
)2 = �0

±, H�0
± = ±p0�

0
± (p0 = |p|),

(50)
(�±)2 = �±, H�± = ±p0�±

(
p0 =

√
|p|2 + m2

)
.

Projection operators (48) and (49) can be used to construct physical states in the 13-dimensional
space of wavefunctions (45).
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6. Conclusion

We have formulated Podolsky’s generalized electrodynamics equation with higher derivatives
in the form of the 20-component first-order relativistic wave equation. This equation describes
vector particles possessing the physical massless state and the massive state that is a ghost.
To obtain the consistent theory, the mass of the vector state should be very large. One can
speculate that the massive vector particles can be described in a gauge-invariant manner by
this theory. For the massive state to be the physical state, we have to use the reverse sign in the
Lagrangian. Then the Hamiltonian also changes the sign. In this case, however, the massless
state becomes the ghost and the question arises: how do we get rid of it? Therefore, the
description of massive particles by Podolsky’s generalized electrodynamics is questionable.
The relativistically invariant bilinear form and the Lagrangian were obtained, and these allow
us to use the advantages of the formulation of relativistic wave equations. The density matrix
obtained can be used for quantum electrodynamics calculations in the first-order formalism.
It should be noted that the Petiau–Duffin–Kemmer form of equations was used in quantum
chromodynamics [25], i.e. in non-Abelian theory.

The 13 × 13-matrix Schrödinger form of the equation is derived, and the Hamiltonian
is obtained. We found projection operators extracting the physical eigenvalues of the
Hamiltonian. The Schrödinger picture has some advantages by considering field interactions.

Appendix A.

Let us consider the field equation (2) with the source of electromagnetic fields—the charge
current density:(

∂2
α − m2

)
∂μFνμ = −m2j̃ν . (A.1)

We have introduced the current j̃ν with the same dimension as in classical electrodynamics.
The first-order equations (6), (7) and (9) reman the same but equation (8) is replaced by

∂μψ̃νμ + mψ̃ν = j̃ν(x). (A.2)

Then equation (16) becomes

(βμ∂μ + mP)�(x) = P0j (x), (A.3)

where

P0 = εμ̃,μ̃, j (x) =

⎛
⎜⎜⎜⎜⎝

jμ(x)

jμν(x)

j̃μ(x)

j̃μν(x)

⎞
⎟⎟⎟⎟⎠ , (A.4)

and P0 is the projection operator, P 2
0 = P0, P +

0 = P0. The projection operator P0 extracts
only the current j̃μ. Therefore, the currents jμ(x), jμν(x) and j̃μν(x) are not present in the
theory and can be put zero. At the Lorentz transformations, j ′(x) = Tj (x), and the Lorentz
covariance of equation (A.3) follows from equations (20) and (23) and

P0T = T P0, P0Jμν = JμνP0. (A.5)

The Hermitianizing matrix η (27) commutes with P0, ηP0 = P0η. Then equation (30) is
replaced by

�(x)(βμ
←−
∂ μ − mP +) = j(x)P0, (A.6)

9
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where j(x) = (jμ(x),−jμν(x), j̃μ(x),−j̃μν(x)). We obtain the classical limit at m → ∞
(a → 0) for Maxwellian electrodynamics from equation (A.1):

∂μFνμ = j̃ν . (A.7)

Thus, equation (A.7) is the standard Maxwell equation with the source term.

Appendix B.

With the help of equation (12), we obtain the products of matrices entering equation (35):

p̂3 = p2p̂, p̂P + P p̂ = P p̂P + p̂, p̂2P = P p̂2, (B.1)

p̂P p̂2 = p2p̂P , p̂P p̂(1 − P) = p̂2(1 − P), (1 − P)p̂2P = 0. (B.2)

Using equations (14), (B.1) and (B.2), one finds

�(� − m) = imPp̂P − p̂2,

�(� − m)[�(� − m)2 + 2p2(� − m) + mp2] = −ip4p̂ − mp2p̂2P, (B.3)

�(� − m)[�(� − m) − m(� − m) + 2p2] = imp2p̂ − p2p̂2 − m2p̂2(1 − P).

From equations (B.1)–(B.3), we obtain ‘minimal’ polynomials of the matrix � for two states:

�2(� − m)3 = 0, p2 = 0, (B.4)

�(� − m)(� − 2m)(�2 − m� − m2) = 0, p2 = −m2. (B.5)

It should be noted that zero eigenvalues of the matrix � for the massless state are degenerated.

Appendix C.

From equation (47), we obtain the Hamiltonian in the momentum space:

H = m(εn,[n4] + εñ,[̃n4] + ε[n4],̃n + ε[̃n4],̃n) + ipm(ε4,m − εm,4)

+
1

m
[(ε[m4],m + ε[̃m4],m̃)p2 − (ε[m4],n + ε[̃m4],̃n − εñ,[̃m4])pmpn]. (C.1)

Using equation (12), one finds

H2 − p2 = m2(ε[n4],[̃n4] + ε[̃n4],[̃n4] + εñ,̃n + εn,̃n) + impnε
4,[n4] − pmpn(ε

[n4],[m4] − ε[n4],[̃m4]),

(C.2)

H2 − p2 − m2 = m2(ε[n4],[̃n4] − ε[n4],[n4] + εn,̃n − εμ,μ)

+ impnε
4,[n4] − pmpn(ε

[n4],[m4] − ε[n4],[̃m4]). (C.3)

Multiplying equation (C.2) and equation (C.3), we obtain

(H2 − p2)(H2 − p2 − m2) = im(m2 + p2)pm(ε4,[̃m4] − ε4,[m4])

+ (m2 + p2)pmpn(ε
[n4],[m4] − ε[n4],[̃m4]). (C.4)

Squaring equation (C.4), one finds

(H2 − p2)2(H2 − p2 − m2)2 = p2(m2 + p2)(H2 − p2)(H2 − p2 − m2). (C.5)

From equation (C.5), we obtain the ‘minimal’ polynomial of the Hamiltonian

H2(H2 − p2)(H2 − p2 − m2)(H2 − 2p2 − m2) = 0. (C.6)

10
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Eigenvalues of the Hamiltonian squared read from equation (C.6) p2
0 = 0, p2

0 = p2,
p2

0 = p2+m2, p2
0 = 2p2+m2. Thus, there are two physical eigenvalues, p2

0 = p2, p2
0 = p2+m2,

corresponding to the massless and massive states of the field, and two nonphysical eigenvalues.
Equation (C.6) can be used to find projection operators extracting physical states in the
Schrödinger picture.
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